

Introduction to Djaq

Djaq - pronounced “Jack” - is an alternative to the Django QuerySet API.

What sets it apart:

	No need to import models

	Clearer, more natural query syntax

	More powerful expressions for output

	More powerful, easier-to-write filter expressions

	More consistent query syntax without resorting to hacks like F() expressions, annotate(), aggregate()

	Column expressions are entirely evaluated in the database

	Extensible: you can write your own functions

	Pandas: Easily turn a query into a Pandas Dataframe

There is also a JSON representation of queries, so you can send queries from a
client. It’s an instant API to your data. No need to write backend classes and
serializers.

Djaq queries are strings. A query string for our example dataset might
look like this:

DQ("Book", "name as title, publisher.name as publisher").go()

This retrieves a list of book titles with book publisher. But you can formulate
far more sophisticated queries; see below. You can send Djaq queries from any
language, Java, Javascript, golang, etc. to a Django application and get results
as JSON. In contrast to REST frameworks, you have natural access to the Django
ORM from the client.

Djaq sits on top of the Django ORM. It can happily be used alongside
QuerySets.

Contents:

	Installation
	Providing a Remote API

	Settings

	Query usage guide

	API Reference
	context(context: Dict) -> DjaqQuery

	conditions(node: B) -> DjaqQuery

	count() -> int

	csv()

	get(pk_value: any) -> Model

	go()

	distinct()

	dicts()

	json()

	limit(limit: int) -> DjaqQuery

	objs()

	offset(offset: int) -> DjaqQuery

	map(result_type: Union[callable, dataclasses.dataclass], data=None)

	order_by() -> DjaqQuery

	qs() -> QuerySet

	rewind() -> DjaqQuery

	schema -> Dict

	schema_all(connection=None) -> Dict

	sql() -> str

	tuples()

	update_object(pk_value: any, update_function: callable, data: Dict, save=True)

	value()

	where(node: Union[str, B]) -> DjaqQuery

	Djaq Management Command

	Result Formats

	Pandas DataFrame

	Conditions

	Functions

	Column expressions

	Subqueries and in Clause

	Order by

	TRUE, FALSE, NULL, Empty

	Datetimes

	Count

	Offset, Limit, Paging, Slicing

	Schema

	Comparing to Django QuerySets

	Parameters and Validator

	Query UI

	Remote API
	Remote Queries

	Remote Updates

	Remote Creates

	Remote Deletes

	Custom API

	Limitations

	Performance

	Sample Bookshop Project

Indices and tables

	Index

	Module Index

	Search Page

Installation

You need Python 3.6 or higher and Django 2.1 or higher.

Install:

pip install Djaq

The bleeding edge experience:

pip install https://github.com/paul-wolf/djaq/archive/master.zip

Now you can call the Djaq API:

from djaq import DjaqQuery as DQ

print(list(DQ("Book", "name as title, publisher.name as publisher").dicts()))

[{'title': 'Name grow along.', 'publisher': 'Long, Lewis and Wright'}, {'title': 'We pay single record.', 'publisher':\
'Long, Lewis and Wright'}, {'title': 'Natural develop available manager.', 'publisher': 'Long, Lewis and Wright'}, {'\
title': 'Fight task international.', 'publisher': 'Long, Lewis and Wright'}, {'title': 'Discover floor phone.', 'publi\
sher': 'Long, Lewis and Wright'}]

Providing a Remote API

We’ll assume below you are installing the Djaq UI. This is not
required to provide an API but is useful to try things out.

Install the API and UI in settings:

INSTALLED_APPS = (
 '...',
 djaq.djaq_api,
 djaq.djaq_ui,
)

Configure urls in urls.py:

urlpatterns = [
 '...',
 path("dquery/", include("djaq.djaq_ui.urls")),
 path("djaq/", include("djaq.djaq_api.urls")),
]

You are done. You can start sending requests to:

/djaq/api/request/

The UI will be available at:

/dquery

Note the UI will send requests to the API endpoint so will not work
without that being configured. You send a request in this form to the
api endpoint:

{
 "queries": [
 {
 "model": "books.Book",
 "output": "id,\nname,\npages,\nprice,\nrating,\npublisher,\nalt_publisher,\npubdate,\nin_print,\n",
 "where": "",
 "order_by": "",
 "limit": "100",
 "offset": "0"
 }
]
}

The UI will create this JSON for you if you want to avoid typing it.

You can also create objects, update them and delete them:

{
 "queries": [
 {
 "model": "books.Book",
 "output": "id,\nname,\npages,\nprice,\nrating,\npublisher,\nalt_publisher,\npubdate,\nin_print,\n",
 "where": "",
 "order_by": "",
 "limit": "100",
 "offset": "0"
 }
],
 "creates": [
 {
 "model": "Book",
 "fields": {
 "name": "my new book"
 }
 }
],
 "updates": [
 {
 "model": "Book",
 "pk": 37,
 "fields": {
 "name": "my new title"
 }
 }
],
 "deletes": [
 {
 "model": "Book",
 "pk": 37
 }
]
}

You can send multiple queries, creates, updates, deletes operations in a single request.

[image: Alternative text]

Settings

The API and UI will use the following settings:

	DJAQ_WHITELIST: a list of apps/models that the user is permitted to include in queries.

	DJAQ_PERMISSIONS: permissions required for staff and superuser.

	DJAQ_VALIDATOR: if using the remote API, you can specify a validator
class to handle all requests. The value assigned must be a class
derived from djaq.query.ContextValidator. The request object is
always added to the context by default. You can examine this in the
validator to make decisions like forbidding access to some users,
etc.

In the following example, we allow the models from ‘books’ to be
exposed as well as the User model. We also require the caller to be
both a staff member and superuser:

DJAQ_WHITELIST = {
 "django.contrib.auth": ["User"],
 "books": [
 "Profile",
 "Author",
 "Consortium",
 "Publisher",
 "Book_authors",
 "Book",
 "Store_books",
 "Store",
],
}
DJAQ_PERMISSIONS = {
 "creates": True,
 "updates": True,
 "deletes": True,
 "staff": True,
 "superuser": True,
}

If we want to allow all models for an app, we can leave away the list
of models. This will have the same effect as the setting above.

DJAQ_WHITELIST = {
 "django.contrib.auth": ["User"],
 "books": [],
}

For permissions, you can optionally require any requesting user to be
staff and/or superuser. And you can deny or allow update
operations. If you do not provide explicit permissions for update
operations, the API will respond with 401 if one of those operations
is attempted.

Query usage guide

Throughout, we use models somewhat like those from Django’s bookshop
example:

from django.db import models

class Author(models.Model):
 name = models.CharField(max_length=100)
 age = models.IntegerField()

class Publisher(models.Model):
 name = models.CharField(max_length=300)

class Book(models.Model):
 name = models.CharField(max_length=300)
 pages = models.IntegerField()
 price = models.DecimalField(max_digits=10, decimal_places=2)
 rating = models.FloatField()
 authors = models.ManyToManyField(Author)
 publisher = models.ForeignKey(Publisher, on_delete=models.CASCADE)
 alt_publisher = models.ForeignKey(
 Publisher, related_name="alt_publisher", on_delete=models.CASCADE, null=True
)
 pubdate = models.DateField()
 in_print = models.BooleanField(default=True)

class Store(models.Model):
 name = models.CharField(max_length=300)
 books = models.ManyToManyField(Book)

These examples use auto-generated titles and names and we have a
slightly more complicated set of models than shown above.

The first thing you want to do is import the DjaqQuery class which we do with an alias:

from djaq import DjaqQuery as DQ

Let’s get book title (name), price, discounted price, amount of discount
and publisher name wherever the price is over 5.

result = \
 list(DQ("Book", """name,
 price as price,
 0.2 as discount,
 price * 0.2 as discount_price,
 price - (price*0.2) as diff,
 publisher.name
 """
).where("price > 5").dicts())

result now contains a list of dicts each of which is a row in the
result set. One example:

[{'name': 'Address such conference.',
 'price': Decimal('99.01'),
 'discount': Decimal('0.2'),
 'discount_price': Decimal('19.802'),
 'diff': Decimal('79.208'),
 'publisher_name': 'Arnold Inc'}]

Here is the structure of the syntax:

DjaqQuery([model_name|model], [<field_exp1>, ...])
.where(<condition_expression>)
.order_by(<field_exp1>, ...)

Whitespace does not matter too much. You could put things on separate
lines.

Note as well that we usually in this tutorial use the .go() convenience
method. The following two calls are pretty much equivalent:

DQ("Book", "name").go()

list(DQ("Book", "name").dicts())

The column expressions can be Django Model fields or arithmetic expressions
or any expression supported by functions of your underlying database
that are also whitelisted by Djaq. Postgresql has thousands of
functions. About 350 of those are available in Djaq.

The syntax is similar to Python. Fields are identifiers that must be like Python identifiers, which they will be since we are referencing Django Models.

	select source: a comma seperated list column expressions. This can as well
be a list of column expressions.

	where: an expression that evaluates to a boolean value; the same as Django
QuerySet.filter() but with Djaq syntax

	order_by: a comma seperated list of column expressions, each of which can be
prepended with minus, -, to indicate descending order rather than the
default ascending order. This can as well be a list of column expressions.

Column expressions can be composed of multiple nested parenthetical expressions and conjoining boolean operators:

	and

	or

Comparisons:

>, <, <>, <=, >=

Equality:

==, !=

List membership:

in, not in

Identity:

is, is not

these can only be used with boolean values:

"in_print is True"
"in_print is not True"

We do not support this usage of not:

Does not work
"not id == 3"

For which use:

"id != 3"

Columns are automatically given names. But you can give them your own
name:

DQ("Book", "name as title, price as price, publisher.name as publisher").go()

or if we want to filter and get only books over 5 in price:

DQ("Book", "name as title, price as price, publisher.name as publisher") \
 .where("price > 5") \
 .go()

The following filter:

DQ("Book", "publisher.name as publisher").where("price > 5 and ilike(publisher.name, 'A%')").go()

will be translated to SQL:

SELECT "books_publisher"."name" FROM books_book LEFT JOIN books_publisher ON ("books_book"."publisher_id" = "books_publisher"."id")
 WHERE ("books_book"."price" > 5 AND "books_publisher"."name" ILIKE \'A%\')'

Our example model also has an owner model called “Consortium” that is
the owner of the publisher:

DQ("Book", "name, price, publisher.name, publisher.owner.name").limit(1).go()
[{'b_name': 'Range total author impact.', 'b_price': Decimal('12.00'), 'b_publisher_name': 'Wright, Taylor and Fitzpatrick', 'b_publisher_owner_name': 'Publishers Group'}]

Check what SQL is generated:

In [20]: DQ("Book", "name, price, publisher.name, publisher.owner.name").limit(1).sql()
Out[20]: 'SELECT "books_book"."name", "books_book"."price", "books_publisher"."name", "books_consortium"."name" FROM books_book LEFT JOIN books_publisher ON ("books_book"."publisher_id" = "books_publisher"."id") LEFT JOIN books_consortium ON ("books_publisher"."owner_id" = "books_consortium"."id") LIMIT 1'

Signal that you want to summarise results using an aggregate function:

DQ("Book", "publisher.name as publisher, count(id) as book_count").go()

[
 {
 "publisher": "Martinez, Clark and Banks",
 "book_count": 6
 },
 {
 "publisher": "Fischer-Casey",
 "book_count": 9
 },
 etc.
]

Order by name:

DQ("Book", "name, price, publisher.name as publisher") \
.where("price > 5") \
.order_by("name") \
.go()

Get average, minimum and maximum prices:

DQ("Book", "avg(price) as average, min(price) as minimum, max(price) as maximum").go()
[
 {
 "average": "18.5287169247794985",
 "minimum": "3.00",
 "maximum": "99.01"
 }
]

Count all books:

DQ("Book", "count(id)").value()

1000

Get unique results with distinct():

DQ("Book", "pubdate.year").where("regex(name, 'B.*') and pubdate.year > 2013").distinct().order_by("-pubdate.year").go()

You can qualify model names with the app name or label used in apps.py:

DQ("books.Book", "name, publisher.name")

You’ll need this if you have models from different apps with the same
name.

To pass parameters, use variables in your query, like {myvar}:

In [30]: oldest = '2018-12-20'
 ...: list(DQ("Book", "name, pubdate").where("pubdate >= {oldest}").context({"oldest": oldest}).limit(5).tuples())
Out[30]:
[('Available exactly blood.', datetime.date(2018, 12, 20)),
 ('Indicate Congress none always.', datetime.date(2018, 12, 24)),
 ('Old beautiful three program.', datetime.date(2018, 12, 25)),
 ('Oil onto mission.', datetime.date(2018, 12, 21)),
 ('Key same effect me.', datetime.date(2018, 12, 23))]

Notice that variables are not f-string placeholders! Avoid using f-strings to
interpolate arguments.

API Reference

DjaqQuery(
 model_source: Union[models.Model, str],
 select_source: Union[str, List, None] = None,
 name: str = None,
 whitelist=None,
)

Construct a DjaqQuery object.

	model_source: the Django model as a string, optionally with label qualifier or a Model class.

	select_source: the output column expressions that may be aliased to a name
with .. as my_name. This argument can be a string that separates the
output columns with columns or a list with a column definition per
element.

	name: provide a name for the query for use later in subqueries

	whitelist: provide a list of models to allow

context(context: Dict) -> DjaqQuery

	context: a dict that contains parameter names and values.

conditions(node: B) -> DjaqQuery

	node: an objects of class B() that encapsulates a filter condition which can be a complex, nested object.

count() -> int

Count the result set.

csv()

Return a generator that returns a comma separated value representation of the result set.

get(pk_value: any) -> Model

Return a Django model instance whose primary key is pk_value.

go()

A shortcut for list(dq.dicts()).

distinct()

Make results unique.

dicts()

Return a generator that returns dictionary representations of the result set.

json()

Return a generator that returns JSON representations of the result set.

limit(limit: int) -> DjaqQuery

Restrict the results to limit items.

objs()

Return a generator that returns objects of type DQResult that are essentially named tuples of the result set.

offset(offset: int) -> DjaqQuery

Start the results at offset of the filtered result set.

map(result_type: Union[callable, dataclasses.dataclass], data=None)

Return a generator that produces a result of a type specified by the dataclass
of result_type or returns the type returned by the callable.

When using a dataclass, Djaq will try to map field names of the results to the
dataclass field names. The names must be exact matches. Use ... as my_name
in your column definitions to get these match up.

When using a callable, your functional or other callable will receive a dict
representation of the result set and you can return whatever you wish.

	result_type: a callable or dataclass

	data: the context dict for the query

order_by() -> DjaqQuery

qs() -> QuerySet

Return a Django QuerySet class with the filtered results. This QuerySet is exact what you get from QuerySet.raw()

rewind() -> DjaqQuery

This will reset the cursor if you have already started to iterate the results with one of the generator methods.

schema -> Dict

A property that returns a dict representing the schema of a model. Use like this:

DQ("Book").schema

schema_all(connection=None) -> Dict

A class method that return a dict of the schema for all models.

DQ.schema_all()

You can pass it the connection name optionally.

sql() -> str

Return the SQL for the DjaqQuery.

tuples()

Return a generator that returns objects of type Tuple for the result set.

update_object(pk_value: any, update_function: callable, data: Dict, save=True)

This will update the object whose primary key is pk_value by calling
update_function(), returning whatever the return value is of that callable.

value()

Return the first field of the first record of the result set. This mainly only makes sense when aggregating.

where(node: Union[str, B]) -> DjaqQuery

Define a filter condition for the query.

Djaq Management Command

If you include the djaq_ui app in your INSTALLED_APPS, you have the ./manage.py djaq command at your disposal:

./manage.py djaq Book --output "pubdate.year" --where "pubdate.year > 2013" --order_by " -pubdate.year"

Most features are available:

❯ ./manage.py djaq
usage: manage.py djaq [-h] [--output OUTPUT] [--where WHERE] [--order_by ORDER_BY] [--format FORMAT] [--schema] [--dataclass] [--limit LIMIT]
 [--offset OFFSET] [--distinct] [--sql] [--count] [--version] [-v {0,1,2,3}] [--settings SETTINGS] [--pythonpath PYTHONPATH]
 [--traceback] [--no-color] [--force-color] [--skip-checks]
 model

Most options are obvious, but some or not related to queries. --dataclass is
use to generate code for a dataclass corresponding to the given Django model:

❯ ./manage.py djaq Book --dataclass
@dataclass
class BookEntity:
 id: int
 name: str
 pages: int
 price: Decimal
 rating: int
 publisher: int
 alt_publisher: int
 pubdate: datetime.date
 in_print: bool

It’s not very sophisticated but should save some typing.

Result Formats

There are serveral ways to get results from a DjangoQuery:

	dataframe(): returns a pandas DataFrame() if pandas is installed

	dicts(): returns a generator yielding a dict for each result row

	tuples(): returns a generator yielding a tuple for each result row

	objs(): returns a generator that yields a DQResult object which is basically a named tuple

	csv(): returns a string that represents the entire csv document

	qs(): returns Django model instances

Pandas DataFrame

Djaq will return a pandas [https://pandas.pydata.org/] DataFrame provided
that pandas is installed (pip install pandas):

In [1]: from djaq import DjaqQuery as DQ

In [5]: df = DQ("Book",
...: """name as Booktitle,
...: price as price,
...: 0.2 as discount,
...: price * 0.2 as discount_price,
...: price - (price*0.2) as diff,
...: publisher.name
...: """).where("price > 5").dataframe()

In [5]: df.head()
Out[5]:
 b_name price discount discount_price diff publisher_name
0 Especially week and item. 14.0 0.2 2.8 11.2 Sanchez-Tran
1 Than movie better. 16.0 0.2 3.2 12.8 Scott Inc
2 Add marriage sport side above. 23.0 0.2 4.6 18.4 Patrick-Carlson
3 Central federal knowledge any one. 18.0 0.2 3.6 14.4 Hicks, Gray and Griffin
4 Price size fast. 16.0 0.2 3.2 12.8 Murphy-Martinez

If pandas is not installed, an error will occur. If you are not using this feature, you do not need to install pandas.

Conditions

Condition objects are like the Q() class in Django QuerySets. The class is B() for
Boolean. You can combine various expressions using the Python boolean operators:

c = (B("regex(name, {name}") & B("pages > {pages}")) | B("rating > {rating}")

You then add the condition to a DjaqQuery:

DQ("Book", "my query...").conditions(c)

If you are using variable substitution as in this example, you’ll want to pass
context data. This might be from a Django request object (though it can be from
any dict-like object).

It is a special feature that if there is a B() expression that has a
variable like pages and the context is missing a variable called
pages, that B() expression will be dropped from the final generated SQL.

The purpose of this is to provide a filter expression that is conditional on the
presence of data on which it depends. If you have an html form with fields that
might or might not be filled by the user to filter the data, you may want to
implement a logic that says “if “name” is provided, search in the name field. If
it is not provided, the user does not want to search by name.

When you write your conditional expressions, these are what would normally go
into the filter part of the query:

rating = 2
price = 10
pages = 700
name = "Dr.*"
DQ("Book", """name as name,
price as price,
rating as rating,
pages as pages,
publisher.name as publisher
""") \
.where("regex(name, {name}) and pages > {pages} and rating > {rating} and price > {price}") \
.context({"rating": rating, "price": price, "pages": pages, "name": name})

In the following example, it is not required to provide data for all fields,
name, pages, rating, price. The conditional expressions will be refactored to
accommodate only those expressions that have data provided.

from djaq import B
def book_list(request):

 c = (
 B("regex(name, {name})")
 & B("pages > {pages}")
 & B("rating > {rating}")
 & B("price > {price}")
)

 books = list(
 DQ("Book",
 "name as name, price as price, rating as rating, pages as pages, publisher.name as publisher",
)
 .conditions(c) # add our conditions here
 .context(request.POST) # add our context data here
 .limit(20)
 .dicts()
)
 return render(request, "book_list.html", {"books": books})

You can check how your conditional expressions will look depending on the context data:

In [1]: from djaq.query import render_conditions
In [2]: from djaq.conditions import B
In [3]: c = B("regex(name, {name})") & B("pages > {pages}") & B("rating > {rating}") & B("price > '$(price)'")
In [4]: ctx = {"name": "sample", "pages": 300}
In [5]: render_conditions(c, ctx)
...:
Out[5]: "(((regex(b.name, {name}) and pages > {pages})))"

Functions

If a function is not defined by DjaqQuery, then the function name is
checked with a whitelist of functions. There are approximately 350
functions available. These are currently only supported for Postgresql and
only those will work that don’t use syntax that is special to Postgresql.
Additionally, the Postgis functions are only available if you have
installed Postgis.

A user can define new functions at any time by adding to the custom
functions. Here’s an example of adding a regex matching function:

from djaq import djaq_functions
djaq_functions["REGEX"] = "{} ~ {}"

Now find all book names starting with ‘B’:

DQ("Book", "name").where("regex(name, 'B.*')").go()

We always want to use upper case for the function name when defining the
function. Usage of a function is then case-insensitive. You may wish to
make sure you are not over-writing existing functions. “REGEX” already
exists, for instance.

You can also provide a callable to DjaqQuery.functions. The
callable needs to take two arguments: the function name and a list of
positional parameters and it must return SQL as a string that can either
represent a column expression or some value expression from the
underlying backend.

In the following:

DQ("Book", "name").where("like(upper(name), upper({name_search}))").context({"name_search": name_search}).go()

like() is a Djaq-defined function that is converted to
field LIKE string. Whereas upper() is sent to the underlying
database because it’s a common SQL function. Any function can be created
or existing functions mutated by updating the DjaqQuery.functions
dict where the key is the upper case function name and the value is a
template string with {} placeholders. Arguments are positionally
interpolated.

Above, we provided this example:

DQ("Book", """
 sum(iif(rating < 5, rating, 0)) as below_5,
 sum(iif(rating >= 5, rating, 0)) as above_5
 """)

We can simplify further by creating a new function. The IIF function is
defined like this:

"CASE WHEN {} THEN {} ELSE {} END"

We can create a SUMIF function like this:

from djaq import djaq_functions
djaq_functions['SUMIF'] = "SUM(CASE WHEN {} THEN {} ELSE {} END)"

Now we can rewrite the above like this:

DQ("Book", """
 sumif(rating < 5, rating, 0) as below_5,
 sumif(rating >= 5, rating, 0) as above_5
 """)

Here’s an example providing a function:

def concat(funcname, args):
 """Return args spliced by sql concat operator."""
 return " || ".join(args)

DjaqQuery.functions['CONCAT'] = concat

Column expressions

Doing column arithmetic is supported directly in the query syntax:

discount = 0.2
DQ("Book", """name,
 price as price,
 {discount} as discount,
 price * {discount} as discount_price,
 price - (price * {discount}) as diff
 """).context({"discount": discount})

These expressions are evaluated in the database.

You can use literals:

In [71]: DQ("Book", "name, 'great read'").limit(1).go()
Out[71]: [{'name': 'Station many chair pressure.', 'great_read': 'great read'}]

You can use the common operators and functions of your underlying db.

The usual arithmetic:

In [72]: DQ("Book", "name, 1+1").limit(1).go()
Out[72]: [{'name': 'Station many chair pressure.', '11': 2}]

In [38]: list(DQ("Book", "name, 2.0/4").limit(1).tuples())
Out[38]: [('Range total author impact.', Decimal('0.50000000000000000000'))]

In [44]: list(DQ("Book", "2*3").limit(1).tuples())
Out[44]: [(6,)]

Modulo:

In [55]: list(DQ("Book", "mod(4.0,3)").limit(1).tuples())
Out[55]: [(Decimal('1.0'),)]

Comparison as a boolean expression:

In [121]: DQ("Book", "2 > 3 as absurd").limit(1).go()
Out[121]: [{'absurd': False}]

While the syntax has a superficial resemblance to Python, you do not
have access to any functions of the Python Standard Libary.

Subqueries and in Clause

You can reference subqueries within a Djaq query.

v_sub = DQ(Book, "id", name="v_sub").where("name == 'B*'") # noqa: F841
DQ(Book, "name, price").where("id in '@v_sub'").go()

This evaluates to:

SELECT "books_book"."name", "books_book"."price"
 FROM books_book WHERE "books_book"."id"
 IN (SELECT "books_book"."id" FROM books_book WHERE "books_book"."name" LIKE \'B%\')

Note that user of single quotes and prepending the sub query name with @: '@queryname'

Make sure your subquery returns a single output column.

DQ("Book", "id").where("name == 'B*'", name='dq_sub')
dq = DQ("Book", "name, price").where("id in '@dq_sub'")

As with QuerySets it is nearly always faster to generate a sub query
than use an itemised list.

If your subquery has parameters, these need to be supplied to the using query:

DQ("Book", "id", name="dq_sub").where("ilike(name, {spec})")
DQ("Book", "name, price").where("id in '@dq_sub'").context({"spec": "B%"})

Order by

You can order_by like this:

DQ("Book", "id").where("price > 20").order_by("name")

Descending order:

DQ("Book", "id").where("price > 20").order_by("-name")

You can have multple order by expressions.

DQ("Book", "name, publisher.name").where("price > 20").order_by("-name, publisher.name")

TRUE, FALSE, NULL, Empty

None, True, False are replaced in SQL with NULL,
TRUE, FALSE. All of the following work:

DQ("Book", "id, name").where("in_print is True")
DQ("Book", "id, name").where("in_print is not True")
DQ("Book", "id, name").where("in_print is False")
DQ("Book", "id, name").where("in_print == True")

To test for NULL, use None:

DQ("Book", "id, name").where("name is not None")

If you want to test for an empty or non-empty string, use LENGTH():

DQ("Book", "id, name").where("length(name) > 0")

Datetimes

Datetimes are provided as strings in the iso format that your backend
expects, like 2019-01-01 18:00:00.

DQ("Book", "pubdate").where("pubdate > '2021-01-01'").go()

Get the difference between two dates:

DQ("Book", "pubdate, age({now}, pubdate) as age").context({"now": timezone.now()}).go()

You can access fields of a date, like year, month, day:

DQ("Book", "name, publisher.name, pubdate.year").where("pubdate.year < 2022").go()

Count

There are a couple ways to count results. These both return the exact
same thing:

DQ("Book").count()
DQ("Book", "count(id)").value()

Offset, Limit, Paging, Slicing

You can use limit() and offset() to page your results:

DjaqQuery("...").offset(1000).limit(100).tuples()

Which will provide you with the first hundred results starting from the
1000th record.

You cannot slice a DjaqQuery because this would frustrate a design
goal of Djaq to provide the performance advantages of cursor-like
behaviour and explicit semantics.

But you can slice the result of the QuerySet method:

DQ("Book").qs()[10:20]

Schema

There is a function to get the schema available to a calling client:

from djaq.app_utils import get_schema
print(get_schema())

Pass the same whitelist you use for exposing the query endpoint:

wl = {"books": []}
print(get_schema(whitelist=wl))

You can get the schema from the DQ object as well:

DQ("Book").schema_all()

Or a specific model:

DQ("Book").schema

Comparing to Django QuerySets

Djaq can be used in theory as a total replacement for Django QuerySets [https://docs.djangoproject.com/en/3.1/ref/models/querysets/]

Djaq has some important advantages over QuerySets. You will probably find Djaq
queries easier to write and understand.

Djaq queries are easier to understand because they don’t make you jump around
mentally parsing the difference between _ and __ and there are far fewer
“special cases” where you need to use different classes and functions to overcome
syntactical constraints of QuerySets.

You can send Djaq queries over the wire for a remote api with minimal effort,
like via a REST call, and receive JSON results. That’s not possible with
QuerySets.

Djaq is explicit about performance semantics. In contrast you need to have
knowledge of and use QuerySets carefully to avoid performance pitfalls.

This section is intended to highlight differences for users with good
familiarity with the QuerySet class for the purpose of comparing
DjaqQuery and QuerySet.

Django provides significant options for adjusting query generation to
fit different use cases, only(), select_related(),
prefetch_related() are all useful for different cases. Here’s a
point-by-point comparison with Djaq:

	only(): Djaq always works in “only” mode. Only explicitly requested
fields are returned with the exception of providing no output fields in which
case Djaq produces all fields but with no foreign key relations.

	select_related(): The output field expression list only returns those columns
explicitly defined. This feature makes loading of related fields
non-lazy. In contrast, queries are always non-lazy in Djaq.

	prefetch_related(): When you have a m2m field as a column
expression, the model hosting that field is repeated in results as
many times as necessary. Another way is to use a separate query for
the m2m related records. In any case, prefetch_related() is
not relevant in Djaq.

	F expressions: These are QuerySet workarounds for not being able to
write expressions in the query for things like column value
arithmetic and other expressions you want to have the db calculate.
Djaq lets you write these directly and naturally as part of its
syntax.

	To aggregate with Querysets, you use aggregate(), or annotate() whereas Djaq
aggregates results whenever an aggregate function appears
in a column expression, just like you would expect it to.

	Model instances with QuerySets exactly represent the corresponding Django
model. Djaq’s usual return formats, like dicts(), tuples(), etc. are
more akin to QuerySet.values() and QuerySet.value_list().

	Slicing: QuerySets can bet sliced: qs[100:150] whereas you use
limit(), offset() with Djaq: dq.offset(100).limit(50)

	Caching: QuerySets will cache results in a rather sophisticated manner to
support slicing (above). With Djaq, you need to rerun the query each time
unless you are caching results yourself. Djaq eschews caching as part of the
query evaluation to encourage separation of concerns and prevent unintended
performance results.

Filter expressions in Djaq have a single expression paradigm, unlike QuerySets.
When you filter a QuerySet, because you are assigning values to a series of
parameters, the only way to construct the final SQL WHERE is to logically
conjoin the boolean assertions.

Book.objects.filter(name_startswith="Bar", pubdate__year__gt='2020')

means name ILIKE 'Bar%' AND date_part("year", pubdate) > 2020. Whereas Djaq is explicit:

DQ("Book").where("ilike(name, 'Bar*') and pubdate.year > 2020")

If you want to change your query to OR with querysets, you have to change how you construct the filter:

from django.db.models import Q
Book.objects.filter(Q(name_startswith="Bar") | Q(pubdate__year__gt=2020))

with Djaq, you just do the obvious, change the operator:

DQ("Book").where("ilike(name, 'Bar%') or pubdate.year > 2020")

Both QuerySets and DjaqQuerys let you add conditions incrementally:

DQ("Book").where("regex(name, 'B.*')").where("pubdate.year > 2020")

Book.objects.filter(name__startswith="B").filter(pubdate__year__gt='2020')

The presumption is to conjoin the two conditions with “AND” in both cases.

Let’s look at some more query comparisons:

Get the average price of books:

DQ("Book","avg(price)").value()

compared to QuerySet:

Book.objects.aggregate(Avg('price'))

Get the difference from the average off the maximum price for each publisher:

DQ("Book", "publisher.name, max(price) - avg(price) as price_diff")

compared to QuerySet:

from django.db.models import Avg, Max
Book.objects.values("publisher__name").annotate(price_diff=Max('price') - Avg('price'))

Count books per publisher:

DQ("Publisher", "name as publisher, count(book) as num_books")

compared to QuerySet:

Publisher.objects.annotate(num_books=Count("book"))

Count books with ratings up to and over a number:

DQ("Book", """publisher.name,
 sumif(rating <= 3, rating, 0) as below_3,
 sumif(rating > 3, rating, 0) as above_3
 """).go()

compared to QuerySet:

from django.db.models import Count, Q
below_3 = Count('book', filter=Q(book__rating__lte=3))
above_3 = Count('book', filter=Q(book__rating__gt=3))
Publisher.objects.annotate(below_3=below_3).annotate(above_3=above_3)

Get average, maximum, minimum price of books:

DQ("Book", "avg(price), max(price), min(price)")

compared to QuerySet:

Book.objects.aggregate(Avg('price'), Max('price'), Min('price'))

Note that by default, you iterate using a generator. You cannot slice a
generator. Use limit() and offset() to page results

Simple counts:

DjaqQuery.value(): when you know the result is a single row with a
single value, you can immediately access it without further iterations:

DQ("Book", "count(id)").value()

will return a single integer value representing the count of books.

Parameters and Validator

We call the Django connection cursor approximately like this:

from django.db import connections
cursor = connections['default']
cursor.execute(sql, context_dict)

When we execute the resulting SQL query, named parameters are used. You
must name your parameters. Positional parameters are not passed:

oldest = '2000-01-01'
DQ("Book", "id").where("pub_date >= '{oldest}").context({"oldest": oldest}).tuples()

Notice that any parameterised value must be represented in the query
expression in curly braces. Note as well, this is not an f-string!

{myparam}

Therefore, when you add subqueries, their parameters have to be supplied
at the same time.

Note what is happening here:

name_search = 'Bar.*'
DQ("Book", "id").where("regex(b.name, {name_search}").context(locals()).tuples()

To get all books starting with ‘Bar’. Or:

DQ("Book", "name").where("like(upper(name), upper({name_search})").context(request.POST)

Provided that request.POST has a name_search key/value.

You can provide a validation class that will return context variables.
The default class used is called ContextValidator(). You can
override this to provide a validator that raises exceptions if data is
not valid or mutates the context data, like coercing types from str
to int:

class MyContextValidator(ContextValidator):
 def get(self, key, value):
 if key == 'order_no':
 return int(value)
 return value

 def context(self):
 if not 'order_no' in self.data:
 raise Exception("Need order no")
 self.super().context()

Then add the validator:

order_no = "12345"
DQ("Orders", "order_no, customer").where("order_no == {order_no}")
 .validator(MyContextValidator)
 .context(locals())
 .tuples()

You can set your own validator class in Django settings:

DJAQ_VALIDATOR = MyValidator

The request parameter of the API view is added to the context and
will be available to the validator as request.

Query UI

You can optionally install a query user interface to try out queries on
your own data set:

	After installing djaq, add djaq.djaq_ui to INSTALLED_APPS

	Add

path("dquery/", include("djaq.djaq_ui.urls")),

to urlpatterns in the site’s \ urls.py\

Navigate to /dquery/ in your app and you should be able to try out
queries.

	Send: call the API with the query

	JSON: show the json that will be sent as the request data

	SQL: show how the request will be sent to the database as sql

	Schema: render the schema that describe the available fields

	Whitelist: show the active whitelist. You can use this to generate a
whilelist and edit it as required.

There is a dropdown control, apps. Select the Django app. Models for
the selected app are listed below. If you click once on a model, the
result field will show the schema for that model. If you double-click
the model, it generates a query for you for all fields in that model.
Once you do that, just press “Send” to see the results.

If the query pane has the focus, you can press shift-return to send the
query request to the server.

[image: Djaq UI]

Remote API

If you install the djaq_api app in INSTALLED_APPS, you have a remote api installed.

You POST requests to the endpoint, which by default is /djaq/api/request/

All requests have this overall structure:

{
 "queries": [],
 "updates": [],
 "deletes": [],
 "creates": []
}

Any section can be left away.

Remote Queries

Provide at least model as an argument:

{
 "queries": [
 {
 "model": "Book",
 "output": "id, name, price",
 "where": "id==3",
 "limit": 1,
 }
]
}

This will provide id, name, price for a Book with id of 3.

Remote Updates

Provide model and pk as arguments and then a set of field name/values:

{
 "updates": [
 {
 "model": "books.Book",
 "pk": 3,
 "fields": {
 "price": 3.99
 }
 }
]
}

Remote Creates

{
 "creates": [
 {
 "model": "books.Book",
 "fields": {
 "name": "My great american novel",
 "publisher_id": 10,
 "price": 3.99
 }
 }
]
}

Remote Deletes

Specify the model and primary key:

{
 "updates": [
 {
 "model": "books.Book",
 "pk": 3,
 }
]
}

Custom API

You can write your own custom API endpoint. Here is what a view function
for your data layer might look like with Djaq:

@login_required
def djaq_view(request):
 data = json.loads(request.body.decode("utf-8"))
 model_name = data.get("model")
 output_expressions = data.get("where")
 order_by = data.get("order_by")
 offset = int(data.get("offset", 0) or 0)
 limit = int(data.get("limit", 0) or 0)
 context = data.get("context", dict() or dict())
 return JsonResponse({
 "result": list(
 DQ(model_name, output_expressions)
 .where(where)
 .order_by(order_by)
 .context(context)
 .limit(limit)
 .offset(offset)
 .dicts()
)
 }
)

You can now query any models in your entire Django deployment
remotely, provided the authentication underlying the login_required
is satisfied. This is a good solution if your endpoint is only
available to trusted clients who hold a valid authentication token or
to clients without authentication who are in your own network and over
which you have complete control. It is a bad solution on its own for
any public access since it exposes Django framework models, like
users, permissions, etc.

Most likely you want to control access in two ways:

	Allow access to only some apps/models

	Allow access to only some rows in each table and possibly only some fields.

For controlling access to models, use the whitelist parameter in constructing the DjangoQuery:

DQ(model_name, column_expressions, whitelist={"books": ["Book", "Publisher",],}) \
 .context(context) \
 .limit(limit) \
 .offset(offset) \
 .dicts()

This restricts access to only the book app models, Book and Publish.

You probably need a couple more things if you want to expose this to a
browser. But this gives an idea of what you can do. The caller now has
access to any authorised model resource. Serialisation is all taken
care of. Djaq comes already with a view similar to the above. You can
just start calling and retrieving any data you wish. It’s an instant
API to your application provided you trust the client or have
sufficient access control in place.

Limitations

The main limitation of Djaq at this time is that it only supports Postgresql.

Performance

You will probably experience Djaq calls as blazing fast compared to
other remote frameworks. This is just because not much happens
inbetween. Once the query is parsed, it is about as fast as you will
ever get unless you do something fancy in a validator. The simplest
possible serialization is used by default.

Once the query is parsed, it is about the same overhead as calling this:

conn = connections['default']
cursor = conn.cursor()
self.cursor = self.connection.cursor()
self.cursor.execute(sql)

Parsing is pretty fast and might be a negligible factor if you are
parsing during a remote call as part of a view function.

But if you want to iterate over, say, a dictionary of variables locally, you’ll want to parse once:

dq = DQ("Book", "name").where("ilike(name, {namestart})")
dq.parse()
for vars in var_list:
 results = list(dq.context(vars).tuples())
 '<do something with results>'

Note that each call of context() causes the cursor to execute again when tuples() is iterated.

Sample Bookshop Project

If you want to use Djaq right away in your own test project and you feel
confident, crack on. In that case skip the following instructions for
using the sample Bookshop project. Or, if you want to try the sample
project, clone the django repo:

git clone git@github.com:paul-wolf/djaq.git
cd djaq/bookshop

If you clone the repo and use the sample project, you don’t need to
include Djaq as a requirement because it’s included as a module by a
softlink. Create the virtualenv:

The module itself does not install Django and there are no further
requirements. Make sure you are in the bookshop directory:

python -m venv .venv && source .venv/bin/activate && pip install --upgrade pip && pip install -r requirements.txt

We need a log directory:

mkdir log

Create a user. Let’s assume a super user:

createsuperuser --username yourname

Now make sure there is a Postgresql instance running. The settings are
like this:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'bookshop',
 },

So, it assumes peer authentication. Change to suit your needs. Now you
can migrate. Make sure the virtualenv is activated!

./manage.py migrate

We provide a script to create some sample data:

./manage.py build_data --book-count 2000

This creates 2000 books and associated data.

There’s a management command to run queries from the command line:

./manage.py djaq Book

Output of the command should look like this:

❯ ./manage.py djaq Book
[
 {
 "id": 2,
 "name": "Station many chair pressure.",
 "pages": 414,
 "price": "12.00",
 "rating": 2.0,
 "publisher": 99,
 "alt_publisher": null,
 "pubdate": "2016-11-30",
 "in_print": true
 },
 {
 "id": 3,
 "name": "Able sense quickly.",
 "pages": 408,
 "price": "29.00",
 "rating": 3.0,
 "publisher": 40,
 "alt_publisher": null,
 "pubdate": "2001-07-27",
 "in_print": true
 },
 ...

The best approach now would be to trial various queries using the Djaq
UI as explained above.

Finally, checkout the settings for the bookshop. You will notice that
many admin models are not accessible. In a real application we’d want to
prevent access to user data and other data on perhaps a finer grained
level.

Run the server:

./manage.py runserver

Now the query UI should be available here:

http://127.0.0.1:8000/dquery/

Index

Choices

If you used the choices argument defining a field in a Django model, you can use the _display suffix to get the plain text:

DQ("Book", "name, genre_display").where("price > 20").order_by("name")
{'name': 'Whole research morning raise.', 'genre_display': 'Mystery'},
{'name': 'Whom shake.', 'genre_display': 'Science fiction'},
{'name': 'Woman fly land.', 'genre_display': 'Fantasy'},
{'name': 'Wonder cup age.', 'genre_display': 'Romance'},

Instead of the genre values stored in the field.

Difference between Djaq and Other Frameworks

The core of Djaq does not actually have anything specifically to do
with remote requests. It is primarily a query language for Django
models. You can just as easily use it within another remote API
framework.

The default remote API for Djaq is not a REST framework although it takes JSON
as a parameter and returns JSON. It does use JSON for encoding data and POST to
send requests. But it does not adhere to the prescribed REST verbs. It comes
with a very thin wrapper for remote HTTP(S) requests that is a simple Django
view function. It would be trivial to write your own or use some REST framework
to provide this functionality. Mainly, it provides a way to formulate queries
that are highly expressive, compact and readable.

There is only one endpoint for Djaq on the backend.

Requests for queries, creates, updates, deletes are always POSTed.

Most importantly, the client decides what information to request using
a query language that is much more powerful than what is available
from other REST frameworks and GraphQL.

Conversely, REST frameworks and GraphQL are more useful than Djaq in providing
server-side business rule implementation, although you can write your own Djaq
view functions to achieve the same ends.

Django Subquery and OuterRef

The following do pretty much the same thing:

QuerySet
pubs = Publisher.objects.filter(pk=OuterRef('publisher')).only('pk')
Book.objects.filter(publisher__in=Subquery(pubs))

Djaq
DQ("Publisher", "id", name='pubs')
DQ("Book", "name").where("publisher in '@pubs'")

Obviously, in both cases, you would be filtering Publisher to make it
actually useful, but the effect and verbosity can be extrapolated from
the above.

Most importantly, sending a query request over the wire, you can
reference the outer scope:

DQ("Book", '(name, ["(count(id)) Book{Publisher.id == b.publisher} b"]) Publisher p')

the subquery output expression references the outer scope. It evaluates
to the following SQL:

SELECT
 "books_publisher"."name",
 (SELECT count("books_book"."id") FROM books_book WHERE "books_publisher"."id" = "books_book"."publisher_id")
FROM books_publisher

There are some constraints on using subqueries like this. For instance,
the subquery cannot contain any joins.

Rewind cursor

You can rewind the cursor but this is just executing the SQL again:

list(dq.tuples())

now, calling `dq.tuples()` returns nothing

list(dq.rewind().tuples())

you will again see results

If you call DjaqQuery.context(data), that will effectively rewind
the cursor since an the query is newly executed.

 _images/djaq_ui.png
Djaq (documentation)

(bid,

b.name,
b.pages,
b.price,
b.rating,
b.publisher,
b.alt_publisher,
b.pubdate,
b.in_print,

) books.Book b

Limit/Offset
100 0
Send JSON sqQL Schema

{
“querie:
[
{
"b_id": 1,
b_name": "Especially week and item.",
b_pages": 478,

"b_rating": 1,

"b_publisher": 43,
b_alt_publisher”: null,
pubdate": "2008-06-27",

"b_id": 2,

'b_name": "Than movie better”,
b_pages": 334,

"b_price": "16.00",

"b_ratins

Whitelist

books v dbl-click model to insert query

books.Profile
books.Author
books.Consortium
books.Publisher
books.Book_authors
books.Book
books.Store_books
books.Store

books.Book

id: AutoField

name: CharField

pages: IntegerField
frice: DecimalField
rating: FloatField
publisher: ForeignKey
alt_publisher: ForeignKey
pubdate: DateField
in_print: BooleanField

_images/djaq_ui1.png
Djaq (documentation)

(bid,

b.name,
b.pages,
b.price,
b.rating,
b.publisher,
b.alt_publisher,
b.pubdate,
b.in_print,

) books.Book b

Limit/Offset
100 0
Send JSON sqQL Schema

{
“querie:
[
{
"b_id": 1,
b_name": "Especially week and item.",
b_pages": 478,

"b_rating": 1,

"b_publisher": 43,
b_alt_publisher”: null,
pubdate": "2008-06-27",

"b_id": 2,

'b_name": "Than movie better”,
b_pages": 334,

"b_price": "16.00",

"b_ratins

Whitelist

books v dbl-click model to insert query

books.Profile
books.Author
books.Consortium
books.Publisher
books.Book_authors
books.Book
books.Store_books
books.Store

books.Book

id: AutoField

name: CharField

pages: IntegerField
frice: DecimalField
rating: FloatField
publisher: ForeignKey
alt_publisher: ForeignKey
pubdate: DateField
in_print: BooleanField

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Introduction to Djaq

 		
 Installation

 		
 Providing a Remote API

 		
 Settings

 		
 Query usage guide

 		
 API Reference

 		
 context(context: Dict) -> DjaqQuery

 		
 conditions(node: B) -> DjaqQuery

 		
 count() -> int

 		
 csv()

 		
 get(pk_value: any) -> Model

 		
 go()

 		
 distinct()

 		
 dicts()

 		
 json()

 		
 limit(limit: int) -> DjaqQuery

 		
 objs()

 		
 offset(offset: int) -> DjaqQuery

 		
 map(result_type: Union[callable, dataclasses.dataclass], data=None)

 		
 order_by() -> DjaqQuery

 		
 qs() -> QuerySet

 		
 rewind() -> DjaqQuery

 		
 schema -> Dict

 		
 schema_all(connection=None) -> Dict

 		
 sql() -> str

 		
 tuples()

 		
 update_object(pk_value: any, update_function: callable, data: Dict, save=True)

 		
 value()

 		
 where(node: Union[str, B]) -> DjaqQuery

 		
 Djaq Management Command

 		
 Result Formats

 		
 Pandas DataFrame

 		
 Conditions

 		
 Functions

 		
 Column expressions

 		
 Subqueries and in Clause

 		
 Order by

 		
 TRUE, FALSE, NULL, Empty

 		
 Datetimes

 		
 Count

 		
 Offset, Limit, Paging, Slicing

 		
 Schema

 		
 Comparing to Django QuerySets

 		
 Parameters and Validator

 		
 Query UI

 		
 Remote API

 		
 Remote Queries

 		
 Remote Updates

 		
 Remote Creates

 		
 Remote Deletes

 		
 Custom API

 		
 Limitations

 		
 Performance

 		
 Sample Bookshop Project

